Unsupervised free-breathing 3D imaging of morphology, function and flow in congenital heart disease
نویسندگان
چکیده
Methods Five patients with CHD were included in this pilot study. The MR studies were performed on a Philips Acheiva 1.5T magnet using a multielement phased array coil with the following sequences in this order: 1. Free-breathing, respiratory synchronized [1], time-resolved MRA following injection of 0.03 mmol/kg of Gadofosveset, and injection rate 2-4cc/second using a power injector. Duration: < 1 minute 2. Free breathing equilibrium phase MRA, acquired voxel size 0.8 × 0.8 × 1.6 mm, 2 NEX. Duration: 2.5-4 minutes 3. Free breathing 3D cine SSFP with respiratory triggering (TR/TE/flip angle: 3/1.5/60; acquired voxel size: 1.5-1.9 × 1.5-2.1 × 7-8 mm3; SENSE acceleration factor: 1.5-2 × 1.5-2; temporal resolution: 30-45 ms). Duration: 4.5-7 minutes 4. Free breathing sagittal 4D phase contrast (PC) imaging with respiratory navigator (18-26 phases/cardiac cycle, Venc 150 cm/sec, spatial resolution 1.6-2.8 mm3.) Duration: 6-12 minutes 5. Free breathing 3D SSFP with respiratory navigator. (acquired voxel size 1 × 1 × 2 mm3) Duration: 5-7 minutes Comparative data was obtained using conventional 2D cine respiratory triggered SSFP sequences (2) in the VLA, 4 chamber and short axis planes, and 2D PC imaging. Data Analysis: Image quality assessment and quantitative volumetric and flow analysis was performed by a single blinded user. MRA images were graded using a semi-quantitative scale from 1-5 for relevant imaging targets in CHD [1], with 1: excellent, no limitations, and 5: non-diagnostic. The clinical scoring system for 2D and 3D cine SSFP was based on blood-myocardial contrast, endocardial edge definition and inter-slice alignment[2]. Paired t-test analysis was performed on LV and RV volumes.
منابع مشابه
Unsupervised free-breathing 3-dimensional imaging of morphology, function and flow in congenital heart disease under 30 minutes: pilot study
Methods Five patients with CHD were included in this pilot study (table 2 in Figure 2). The FB MR studies were performed on a Philips Acheiva 1.5T magnet using a 5-channel phased array coil (see Table 1 in Figure 1) 1. Respiratory synchronized [1], time-resolved MRA 2. Equilibrium phase MRA 3. 3D cine SSFP 4.4D phase contrast (PC) flow imaging 5.3D whole-heart single phase SSFP (coronary) Compa...
متن کامل3D Whole Heart Imaging for Congenital Heart Disease
Three-dimensional (3D) whole heart techniques form a cornerstone in cardiovascular magnetic resonance imaging of congenital heart disease (CHD). It offers significant advantages over other CHD imaging modalities and techniques: no ionizing radiation; ability to be run free-breathing; ECG-gated dual-phase imaging for accurate measurements and tissue properties estimation; and higher signal-to-no...
متن کاملOperator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study.
BACKGROUND Operator-independent isotropic 3D MRI may greatly simplify the assessment of complex morphology in congenital heart disease. We sought to evaluate the reliability of this new approach. METHODS AND RESULTS In 31 adolescent and adult patients (age, 6 to 42 years; median, 16 years) with congenital heart disease, cardiac morphology was determined with free-breathing (navigator-gated), ...
متن کاملPC VIPR for Comprehensive Cardiovascular Evaluation in Congenital Heart Disease
Introduction Imaging of congenital heart disease usually requires multiple anatomical and functional scans followed by several 2D phase contrast (PC) acquisitions in a variety of oblique scan planes for flow measurements. A new PC acquisition technique has been developed using vastly undersampled isotropic projection reconstruction (PC VIPR) [1], which allows for volumetric 3D CINE flow imaging...
متن کاملRight ventricular Hemodynamic Alteration after Pulmonary Valve Replacement in Children with Congenital Heart Disease
Introduction: In patients who underwent surgery to repair Tetralogy of Fallot, right ventricular dilation from pulmonary regurgitation may be result in right ventricular failure, arrhythmias and cardiac arrest. Hence, pulmonary valve replacement may be necessary to reduce right ventricular volume overload. The aim of present study was to assess the effects of pulmonary valve replacement on rig...
متن کامل